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1 FLRW SPACE TIME

Friedmann-Lemâıtre-Robertson-Walker (FLRW) Space-Time Metric
The FLRW metric, a cornerstone of cosmology, represents a fundamental so-

lution to Einstein’s field equations within the framework of general relativity. It
serves as a crucial tool for describing the large-scale structure and evolutionary
dynamics of the universe. This metric is named after its notable contribu-
tors: Alexander Friedmann, Georges Lemâıtre, Howard Robertson, and Arthur
Walker.

1.1 Key Features of FLRW Metric

The FLRW metric embodies key characteristics that underpin our understand-
ing of the universe:

• Homogeneity: The universe is presumed to exhibit homogeneity, mean-
ing it appears uniform and indistinguishable at every point when examined
over significant scales.

• Isotropy: Isotropy denotes the universe’s uniformity in all directions
when observed over extensive scales. This characteristic forms a funda-
mental assumption of the FLRW metric.

• Spatial Curvature: The geometry of the universe is described by three
distinct spatial curvatures: closed (positive curvature), flat (zero curva-
ture), or open (negative curvature).

• Scale Factor (a): The scale factor a(t) acts as a pivotal parameter in the
FLRWmetric, delineating the universe’s expansion over time. It quantifies
the alteration in distances between cosmic objects as a function of cosmic
time t.

1.2 The FLRW Metric Equation

The FLRW metric is mathematically expressed through the following line ele-
ment:

ds2 = −c2dt2 + a(t)2
[
dr2 + f(r)dθ2 + r2(dϕ2 + sin2 θdθ2)

]
Where:

• ds represents the infinitesimal proper time interval.

• c signifies the speed of light.

• a(t) characterizes the scale factor, a function reliant on time.

• f(r) encapsulates the spatial curvature of the universe, denoted as k = −1
for an open universe, k = 0 for a flat universe, and k = 1 for a closed
universe.
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1.3 Interpreting the Metric

The metric is structured to encompass both time and spatial components. The
first term is associated with time, with t representing cosmic time. The subse-
quent term delineates spatial components, incorporating variables such as r, θ,
and ϕ that act as comoving coordinates.

1.4 Cosmic Evolution

The evolution of the universe hinges on the behavior of the scale factor a(t).
This parameter is fundamental for understanding the cosmos’ expansion and its
overall evolution. By studying a(t), cosmologists gain valuable insights into the
development of our universe.

2 Christoffel Symbols for FLRW Metric

The FLRW metric is represented by the metric tensor G, and we will calculate
some of the associated Christoffel symbols.

2.1 Metric Components

3 Mathematical Expressions

Here are some mathematical expressions:
1. Expression for gij :
1 0 0 0

0 − a2

1−kr2 0 0

0 0 −a2r2 0
0 0 0 −a2r2 sin2 θ


2. Expression for gij
1 0 0 0

0 − 1−kr2

a2 0 0
0 0 − 1

a2r2 0
0 0 0 − 1

a2r2 sin2 θ


3.1 Christoffel Symbols

The formula for calculating the Christoffel Symbols is given as:

Γi
jk =

1

2
gil

(
∂gjl
∂xk

+
∂glk
∂xj

− ∂gjk
∂xl

)
(3.1.1)

3.1.1 Christoffel symbol Γ0
11

aȧ
1−kr2
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3.1.2 Christoffel symbol Γ0
22

aȧr2

3.1.3 Christoffel symbol Γ0
33

aȧr2sin2θ

3.1.4 Christoffel symbol Γ1
01= Γ2

02= Γ3
03

ȧ
a

3.1.5 Christoffel symbol Γ1
11

kr
1−kr2

3.1.6 Christoffel symbol Γ2
12 = Γ3

13

1
r

3.1.7 Christoffel symbol Γ1
22

−r(1− kr2)

3.1.8 Christoffel symbol Γ1
33

−r(1− kr2)sin2θ

3.1.9 Christoffel symbol Γ2
33

−sinθcosθ

3.1.10 Christoffel symbol Γ3
23

cotθ

3.2 Ricci Tensor

The Ricci tensor, denoted as Rij , is a fundamental concept in General Rela-
tivity. It serves to represent the curvature of spacetime in gravitational fields.
Specifically:

1. Curvature of Spacetime: The Ricci tensor reflects how the presence
of mass and energy warps the fabric of spacetime. In the framework of General
Relativity, massive objects cause the spacetime around them to curve, and the
Ricci tensor encodes this curvature information.

2. The Einstein Field Equations: The Ricci tensor is a central com-
ponent of Einstein’s field equations, which establish the relationship between
the distribution of matter and energy and the curvature of spacetime. These
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equations form the basis of General Relativity and explain the origin of gravity
and how objects move within gravitational fields.

3. Gravitational Interactions: The Ricci tensor plays a vital role in
modeling gravitational interactions. It signifies how the presence of mass and
energy induces spacetime curvature, and this curvature, as described by the
Ricci tensor, governs the gravitational behavior of objects.

4. Tidal Forces: Different components of the Ricci tensor describe how
tidal forces manifest in a gravitational field. Tidal forces denote variations in
the gravitational forces experienced by various parts of an extended object, and
these variations are characterized by the components of the Ricci tensor.

The formula for computing the Ricci tensor, denoted as Rij , is given as:

Rij =
∂Γl

ij

∂xl
− ∂Γl

il

∂xl
+ Γm

ijΓ
l
lm − Γm

il Γ
l
jm (3.2.1)

Here, Latin alphabet indices i, j, l,m represent components and xl denotes
the coordinate variable.

4 F(T, TG) Gravity

The Universe seems to have undergone two significant phases—early inflation
and later acceleration. Researchers have explored two main paths to explain
this phenomenon.

The first path involves changing what the Universe is made of. This means
introducing new elements like scalar fields, vector fields, and more. These in-
troduce concepts like the inflaton (related to early inflation) and dark energy
(related to late acceleration). Many different models fall under this category,
providing various explanations.

The second path involves tweaking the way gravity works. Instead of modify-
ing the content of the Universe, we modify how gravity operates. It’s interesting
to note that you can switch between these paths because what matters is the
number of additional factors beyond our standard understanding of particles
and general relativity.

In modified gravitational theories, we often build upon the curvature-based
Einstein-Hilbert action. But there’s another intriguing approach using a differ-
ent formulation, called the ”teleparallel equivalent of general relativity” (TEGR).
In TEGR, gravity is attributed to torsion instead of curvature. This involves
using a connection known as the Weitzenböck connection instead of the more
common Levi-Civita connection. The gravitational Lagrangian in this frame-
work is determined by contractions of the torsion tensor, referred to as the
”torsion scalar” T, akin to the ”curvature scalar” R in general relativity.

Just like how we can extend general relativity with f(R) modifications, we
can also develop f(T ) extensions of TEGR. The interesting part is that f(T )
gravity is different from f(R) gravity, even though TEGR itself aligns with gen-
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eral relativity. This novel class of gravitational modification has led to extensive
studies on how it impacts the cosmos and solutions related to black holes.

But the modifications don’t stop at simple changes to the curvature of grav-
ity. More complex actions can be crafted, including higher-curvature corrections
like the Gauss-Bonnet combination G or arbitrary functions f(G). This same
approach can be applied to the teleparallel formulation of gravity, introducing
higher-torsion corrections.

In recent work, a new quartic torsional scalar called TG was developed, which
reduces to a topological invariant in four dimensions. Combining this with the
torsion scalar T , a new gravity theory called F (T, TG) gravity emerged. This
constitutes a fresh class of gravitational modifications distinct from both f(T )
and f(R,G) gravity.

4.1 Torsion Scalar (T)

In the realm of understanding gravity, there’s an alternative perspective that
doesn’t rely on spacetime curvature but on something called ”torsion”. To
achieve this, we depart from the idea that the antisymmetric part of the con-
nection is zero and instead use what’s known as the Weitzenböck connection. In
this framework, we create the torsion tensor, which contains all the information
about the geometry and, consequently, about gravitational forces.

From this, we can build simple mathematical quantities that involve the
first-order derivatives of something called the vierbein. These mathematical
quantities are combined to create what’s called the ”torsion” scalar, denoted
as T. This T scalar becomes the heart of the gravitational Lagrangian, which,
when used to derive the equations of motion by varying it with respect to the
vierbein, results in the same gravitational field equations as those in general
relativity.

Einstein was so intrigued by this formulation that he named it the ”telepar-
allel equivalent of general relativity” (TEGR) because, despite its different ap-
proach, it yields the same gravitational outcomes as the well-known theory of
general relativity.

In the teleparallel formulation of gravity, we take a different perspective
than traditional general relativity. Instead of focusing on spacetime curvature,
we work with something called ”torsion.” This involves two key components:
the vielbein field, denoted as eµa(x

µ), and the connection 1-forms, written as
ωb
a(x

µ), which define parallel transportation.
We can express these components using coordinates as:

ea = eµa∂µ and ωb
a = ωb

aµdx
µ = ωb

aec.

We also introduce the dual vielbein as:

ea = eµadx
µ.

The commutation relations for vielbein can be defined as:

1

2
[ea, eb] = Cc

abec,
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where the structure coefficients Cc
ab are given by:

Cc
ab = eµae

ν
b (ecµ;ν − ecν;µ),

with a comma denoting differentiation.
We can also define the torsion tensor, expressed in tangent components as:

T bc
a = ωcb

a − ωbc
a − Cbc

a ,

while the curvature tensor is defined as:

Rbcd
a = ωbd;c

a − ωbc;d
a + ωbd

e ωec
a − ωbc

e ωed
a − Ccdωbe

a .

To work with these elements effectively, we use the metric tensor g, which
makes the vielbein orthonormal, given by:

g(ea, eb) = ηab,

where ηab = diag(−1, 1, . . . , 1).
This allows us to express the metric tensor gµν as:

gµν = ηabeµae
ν
b ,

and indices a, b, . . . are raised/lowered using the Minkowski metric ηab.
We further define the contorsion tensor as:

Kabc =
1

2
(T cab − T bca − T abc) = −Kbac.

In this formulation, we impose the condition of teleparallelism, where Rbcd
a =

0 holds in all frames. This condition can be realized by assuming a specific
connection known as the Weitzenböck connection.

The Ricci scalar R̄ corresponding to the Levi-Civita connection can be ex-
pressed as:

eR̄ = −eT + 2(eT ν
ν;µ),

where we’ve defined the ”torsion scalar” T as:

T =
1

4
TµνλTµνλ +

1

2
TµνλTλνµ − T ννµTλλµ,

and e = det(eµa) =
√
|g|.

4.2 Gauss-Bonnet Gravity

The construction of the Teleparallel Equivalent of General Relativity (TEGR)
involved expressing the Ricci scalar R for a general connection as the Ricci scalar
R̄ calculated with the Levi-Civita connection, plus additional terms arising from
the torsion tensor. By imposing the condition of teleparallelism (Ra

bcd = 0), we
found that R̄ can be expressed as a torsion scalar plus a total derivative.
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Now, we can follow a similar approach but use the Gauss-Bonnet combi-
nation, G = R2 − 4RµνR

µν + RµνκλR
µνκλ, instead of the Ricci scalar. In a

previous work [28], we derived the teleparallel equivalent of Gauss-Bonnet grav-
ity characterized by a new torsion scalar TG and the equations of motion for
the modified gravity defined by the function F (T, TG).

When working with the Weitzenböck connection (ωbc
a = 0), we find that the

Gauss-Bonnet term Ḡ calculated by the Levi-Civita connection can be expressed
as:

eḠ = eTG + total divergence.

The torsion scalar TG in this context is given by:

TG = Ka1ea1K
ea2 eb2K

a3fcK
fa4d− 2Ka1a2aKa3eb2 ebK

eb2 fcK
fa4d

+2Ka1a2aKa3eb2 ebK
eb2a4fK

f
cd + 2Ka1a2aKa3eb2 ebK

eb2a4c; d)δ
abcd
a1a2a3a4

,

where δabcd is the determinant of the Kronecker deltas.
In summary, TG serves as the teleparallel equivalent of the Gauss-Bonnet

term Ḡ.

5 Late-time constraints on Gauss-Bonnet cos-
mology

Here, we investigate a gravitational action that combines the Ricci scalar (R)
and the topological Gauss-Bonnet term (G). Specifically, we focus on a spe-
cific class of modified gravity theories expressed as f(R,G) = RnG1−n. These
theories are chosen based on symmetry considerations.

We concentrate on a scenario where the universe is spatially flat, homo-
geneous, and isotropic. In this context, we want to demonstrate that we can
account for the observed acceleration of the universe using the underlying geom-
etry itself, thus avoiding the issues associated with the cosmological constant.

Our methodology involves validating the Friedmann equations in the pres-
ence of pressureless matter to understand how the Hubble expansion rate varies
with redshift. To validate our model, we impose constraints on the theory’s free
parameters using a Bayesian Monte Carlo method, which is applied to late-time
cosmic observations.

5.1 Monte Carlo Markov Chain

MCMC is a powerful statistical technique used for sampling from probability
distributions. It plays a crucial role in model exploration and parameter esti-
mation. Here’s an elaboration on what MCMC does:

• Sampling and Parameter Adjustment: MCMC involves the itera-
tive sampling of model parameters from a probability distribution. The
algorithm adjusts these parameters based on the likelihood of observed
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data, aiming to explore regions of the parameter space that contribute
significantly to the model’s fit.

• Convergence to High-Likeness Regions: Through successive itera-
tions, MCMC aims to converge towards regions of the parameter space
with high likelihood. This process refines the model, making it more con-
sistent with the observed data and improving its overall accuracy.

• Iterative Model Refinement: MCMC operates in an iterative fashion,
continually refining the model based on the information gained from the
exploration of the parameter space. This iterative refinement enhances
the model’s predictive power and reliability.

• Parallelized Walker Exploration: To expedite the exploration pro-
cess, MCMC often employs parallelized walker exploration. This means
distributing the task among multiple walkers, allowing for simultaneous
exploration of different regions within the parameter space.

• Facilitating Complex Model Configurations: MCMC is particularly
useful when dealing with complex models with high-dimensional parame-
ter spaces. It enables a more comprehensive exploration, ensuring that a
diverse set of model configurations is considered.

5.2 Fitting ΛCDM model using MCMC Analysis.

The initial condition for the Hubble parameter, denoted as H(0), is straightfor-
ward: H(0) = H0. To determine the second initial condition, we aim to ensure
that, at the present time, the first derivative of the Hubble parameter aligns
with the predictions of the standard Cold Dark Matter (CDM) model. The
CDM model is described by the expansion law:

HΛCDM = 100h
√
Ω(1 + z)3 + 1− Ω

By taking the first derivative of this equation with respect to z, we obtain:

H ′
CDM =

3H0Ωm0(1 + z)2

2 [Ωm0(1 + z)3 + 1− Ωm0]

This expression determines the second initial condition for our model, specif-

ically H(0) =
3H0Ω(m0)

2 .
In our numerical analysis, we use the reduced Hubble constant h, defined as

h ≡ H0

100 km s−1 Mpc−1 . This parameter, along with m0, plays a crucial role in our

model.
The code with MCMC Analysis is provided right here:

import numpy as np
from astropy . i o import a s c i i
from sc ipy . opt imize import c u r v e f i t
import matp lo t l i b . pyplot as p l t
import emcee
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import corner
%matp lo t l i b i n l i n e

de f model ( parameters ) :
h , omega = parameters
re turn 100∗h∗np . sq r t ( omega∗(1+ r e d s h i f t )∗∗3 + 1−omega )

de f l n l i k e ( parameters , x , y , ye r r ) :
r e turn −0.5 ∗ np . sum ( ( ( y − model ( parameters ) )/ ye r r ) ∗∗ 2)

de f l n p r i o r ( parameters ) :
h , omega = parameters
i f 0.5<h<0.8 and 0<omega<0.4 :

r e turn 0 .0
re turn −np . i n f

de f lnprob ( parameters , x , y , ye r r ) :
lp = l np r i o r ( parameters )
i f not np . i s f i n i t e ( lp ) :

r e turn −np . i n f
r e turn lp + l n l i k e ( parameters , x , y , ye r r )

Yerr = da t a o r i g i n a l [ : , 2 ]
data = ( hubble , r e d s h i f t , Yerr )
nwalkers = 700
n i t e r = 400
i n i t i a l = np . array ( [ 0 . 6 , 0 . 3 ] )
ndim = len ( i n i t i a l )
p0 = [ np . array ( i n i t i a l ) + 1e−7 ∗ np . random . randn (ndim) f o r i in range ( nwalkers ) ]

de f main (p0 , nwalkers , n i t e r , ndim , lnprob , data ) :
sampler = emcee . EnsembleSampler ( nwalkers , ndim , lnprob , args=data )

p r i n t (”Running burn−in . . . ” )
p0 , , = sampler . run mcmc (p0 , 100)
sampler . r e s e t ( )

p r i n t (”Running product ion . . . ” )
pos , prob , s t a t e = sampler . run mcmc (p0 , n i t e r )

re turn sampler , pos , prob , s t a t e
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sampler , pos , prob , s t a t e = main (p0 , nwalkers , n i t e r , ndim , lnprob , data )

de f p l o t t e r ( sampler , r e d s h i f t = r e d s h i f t , hubble = hubble ) :
p l t . ion ( )
p l t . s c a t t e r ( r e d sh i f t , hubble , c o l o r =’b ’ )
samples = sampler . f l a t c h a i n
f o r parameters in samples [ np . random . rand int ( l en ( samples ) , s i z e =100) ] :

p l t . p l o t ( r e d sh i f t , model ( parameters ) , c o l o r=”r ” , alpha =0.1)
p l t . t i c k l a b e l f o rma t ( s t y l e =’ s c i ’ , a x i s =’x ’ , s c i l i m i t s =(0 , 0 ) )
p l t . x l ab e l ( ’ r e d s h i f t ’ )
p l t . y l ab e l ( ’ hubble ’ )
p l t . l egend ( )
p l t . show ( )

p l o t t e r ( sampler )

ON running this code, we get the following output

Figure 1: Output

This suggests that the MCMC function has run properly as the model is
fitting properly on the observed data.

The optimised values of the parameters come out to be : Ω = 0.3 and h =
0.6.

5.3 Numerical Differentiation of higher order ODE

Assuming matter behaves as a pressureless perfect fluid, we can express the
matter density (ρm) as:
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ρm = 3H2
0Ωm0(1 + z)3

where Ωm0 is the current value of the matter density parameter. Thus, for
the specific model under consideration, the first Friedmann equation takes the
form:

− H2·(n−1)·(1+z)2

(H−(1+z)·dHdz)2·(2H−(1+z)·dHdz)−
dHdz2·5·H3·(n−1)·(1+z)2

(H−(1+z)·dHdz)2·(2H−(1+z)·dHdz)+
dHdz·3·H4·(n−1)·(1+z)

(H−(1+z)·dHdz)2·(2H−(1+z)·dHdz)+

dHdz3·2·H2·(n−1)·(1+z)3

(H−(1+z)·dHdz)2·(2H−(1+z)·dHdz)+
H02·4(n−1)·(1+z)3·Ωm0

n ·
(

H2·(H−(1+z)·dHdz)
2H−(1+z)·dHdz

)(n−1)

=

H2

Used the odeint method to find H’ values and H” Values and also plotted H’
vs z plots and H” vs z plots.

• odeint is commonly used to solve systems of first-order ordinary differen-
tial equations (ODEs).

• For higher-order differential equations, we can convert them to first-order
form by introducing new variables.

• A function is then defined to represent the system of first-order differential
equations, allowing odeint to be applied.

• The corresponding code for the following function is given in the next
slide.

# Def ine your ODE func t i on ’ f ’ here
de f f (u , z , H0 , Omega m0 , n ) :

H, dHdz = u
# Def ine the ODEs here
dHdt = dHdz
dHdz = −((H∗∗2) ∗ (n − 1) ∗ (1 + z )∗∗2) / ( (H − (1 + z ) ∗ dHdz)∗∗2 ∗
(2 ∗ H − (1 + z ) ∗ dHdz ) ) − dHdz∗∗2) ∗ (5 ∗ (H∗∗3) ∗ (n − 1) ∗ (1 + z )∗∗2)
/ ( (H − (1 + z ) ∗ dHdz)∗∗2 ∗ (2 ∗ H − (1 + z ) ∗ dHdz ) ) + \

dHdz ∗ (3 ∗ (H∗∗4) ∗ (n − 1) ∗ (1 + z ) ) / ( (H − (1 + z ) ∗ dHdz)∗∗2 ∗
(2 ∗ H − (1 + z ) ∗ dHdz ) ) + dHdz∗∗3) ∗ (2 ∗ (H∗∗2) ∗ (n − 1) ∗
(1 + z )∗∗3) ( (H − (1 + z ) ∗ dHdz)∗∗2 ∗ (2 ∗ H − (1 + z ) ∗ dHdz ) ) + \
( (H0∗∗2 ∗ 4∗∗(n − 1) ∗ (1 + z )∗∗3 ∗ Omega m0) / n) ∗ ( ( (H∗∗2) ∗
(H − (1 + z ) ∗ dHdz ) ) / (2 ∗ H − (1 + z ) ∗ dHdz ) )∗∗ ( n − 1) − (H∗∗2)

re turn [ dHdt , dHdz ]

# Def ine H0 , Omega m0 , n , and other parameters
H0 = 70
Omega m0 = 0 .3
n = 1 .2

# Assuming data i s loaded and has at l e a s t two columns
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zs = np . s o r t ( data [ : , 0 ] ) # Sort the time va lues
# zs = np . unique ( zs ) # Remove dup l i ca t e s , i f any

# Def ine i n i t i a l c ond i t i on s
y0 = [H0 , (3 ∗ H0 ∗ Omega m0) / 2 ]

# Solve the ODE
os = ode int ( f , y0 , zs , a rgs=(H0 , Omega m0 , n ) )

Using the following odient function, we plot H vs z , H’ vs z and H” vs z
plots given below.

Figure 2: H vs z

Looking at H vs Z plot, we can confirm the validity of the values as it is
giving a good fit with the observed data.

Moreover, the plot seems to be a straight line which implies that the slope
is constant throughout. We will see that in the next plot.
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Figure 3: H’ vs z

As we had predicted, we see that the slope is indeed a straight line and H’
values are around 65.09.

Now we see the H” vs z plot.

Figure 4: H” vs z
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6 Conclusion

Now all that is left is to substitute the values of H’ and H” in the Friedmann
equation given above and fit for H. MCMC function has to be used to determine
the best fit parameter values of Ω , n and h.

In conclusion, the framework for model exploration discussed involves key
components such as the model-generating function, ensemble of walkers, sys-
tematic parameter space exploration, and the implementation of Markov Chain
Monte Carlo (MCMC) steps for iterative model refinement. The MCMC tech-
nique plays a crucial role in converging towards high-likelihood regions of the pa-
rameter space, allowing for the adjustment of model parameters to better align
with observed data. Furthermore, the numerical analysis considers the reduced
Hubble constant h as a free parameter, along with m0, providing flexibility
in exploring a wide range of model configurations. Additionally, the deriva-
tion of initial conditions for the Hubble parameter in the context of a specific
model showcases the methodological considerations involved. The utilization
of odeint for solving systems of first-order ordinary differential equations is
highlighted, emphasizing the importance of converting higher-order equations
to first-order form for efficient numerical solutions. Overall, this comprehensive
approach provides a robust foundation for model exploration and refinement in
cosmological studies.
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